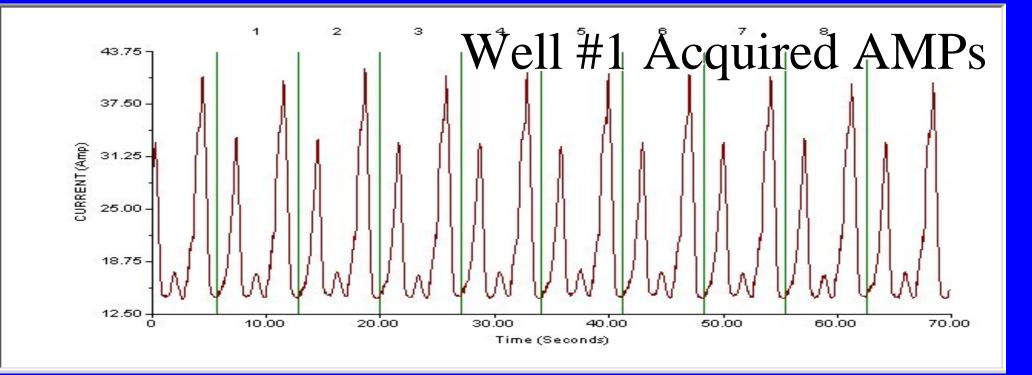
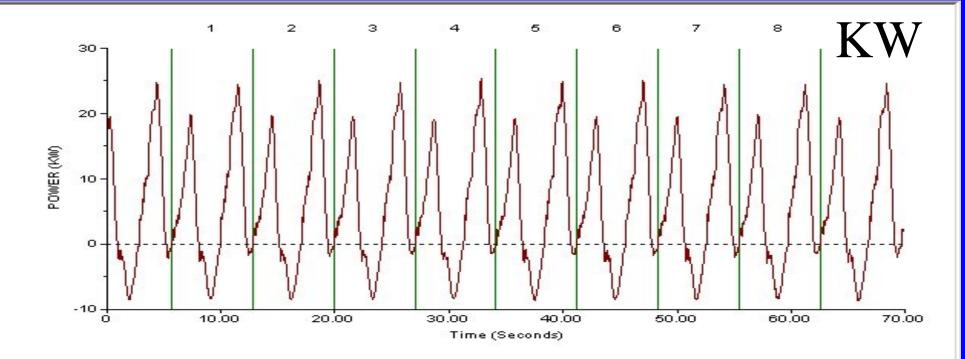
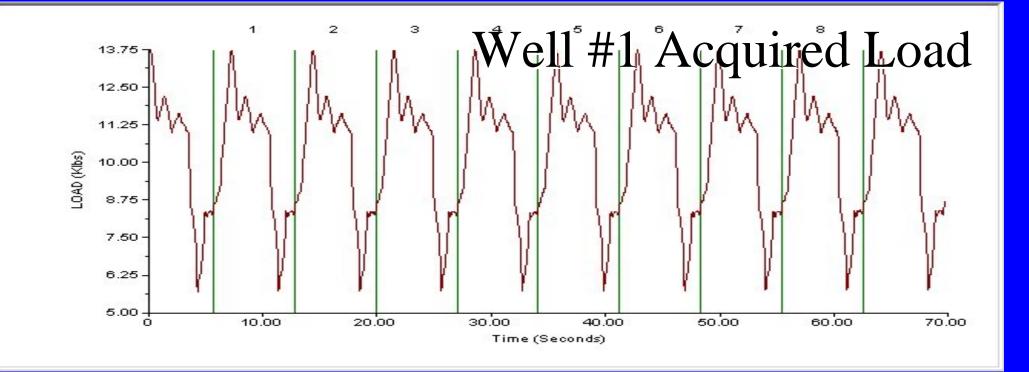

Best Method to Balance Net Torque Loading on a Pumping Unit Gearbox

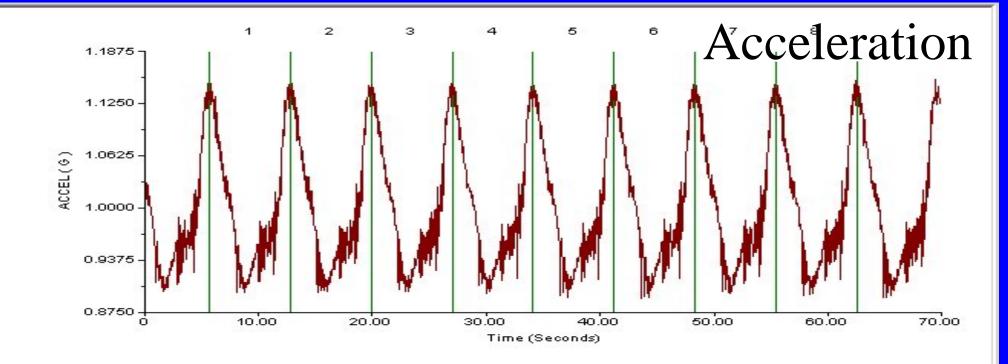
Reduced Gear Life Relative to % Overload

Reasons to Properly Counter Balance Gearbox Loading


- 1) Reduce Operating Expenses
- 2) Minimize Torque Loading on Gearbox and Not Exceed Gearbox Load Rating
- 3) More Uniform Torque Loading through out Stroke
- 4) Minimize Energy Cost
- **5) Minimize Prime Mover Requirements**
- 6) Do not Damage Artificial Lift Equipment

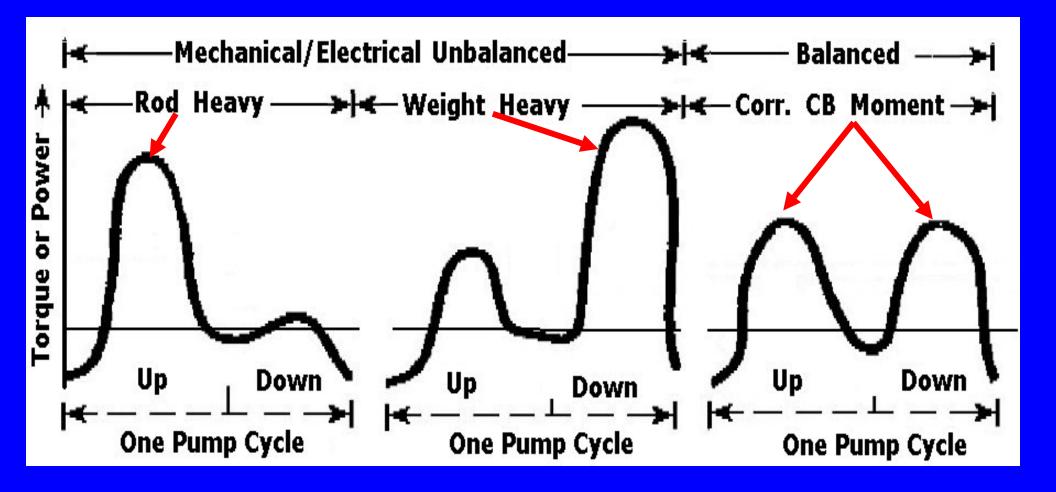

Three Methods Available to Determine Net Gearbox Torque Loading


- 1) Use Input Motor Power, motor and drive efficiencies and the pumping unit speed
- 2) Use surface dynamometer card and torque factors together with counterbalance moments determined from static counter balance effect, CBE, test.
- 3) Use surface dynamometer card and torque factors together with counterbalance moments from the crank and weights

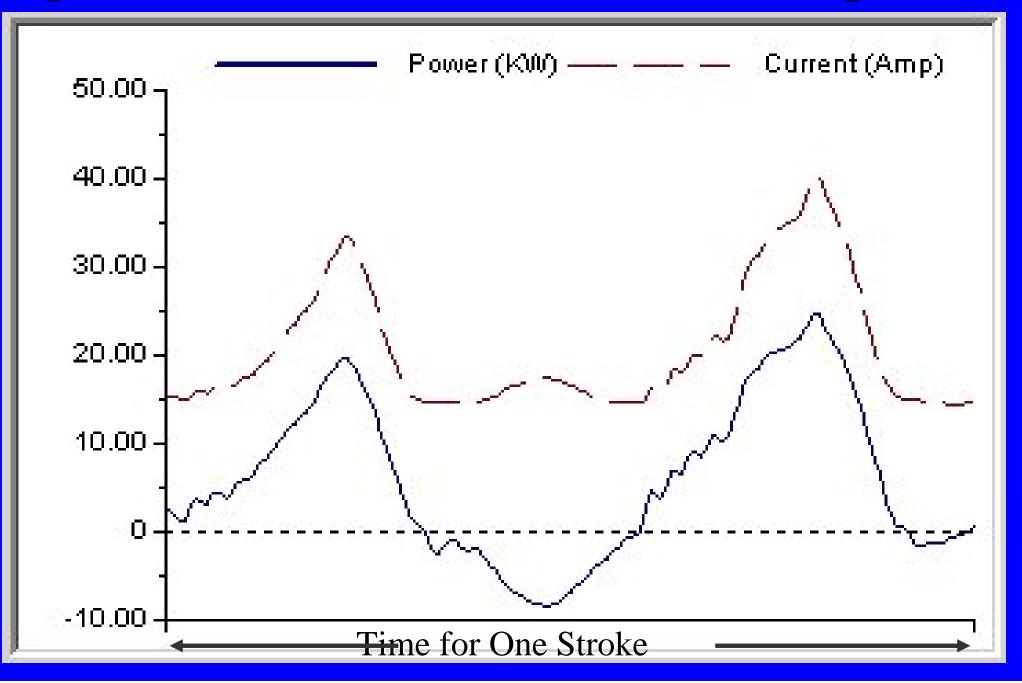

Three Methods to Determine Gearbox Loading

Motor Net Gearbox Torque Behaves Same as Mechanical Net Gearbox Torque

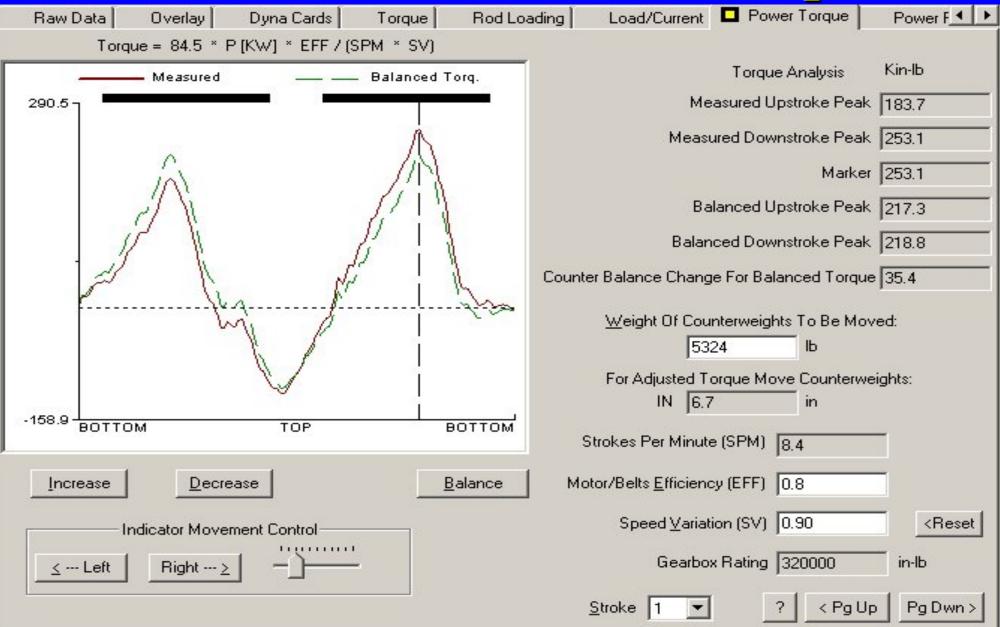
Well #1 Plot of Power and Mechanical Torque Data


Both show unit weight heavy (overbalanced)

Counterweights need to move in from the end of the crank to balance the peak torques



More Uniform Torque Loading Throughout Stroke


Mechanical/Torque (in-lbs) or Electrical/Power (kW) Signatures for a Unbalanced or Balanced Pumping Unit:

Acquire Electric Power (kW) and Current (Amps) Input to the Motor over the time of a Pump Stroke

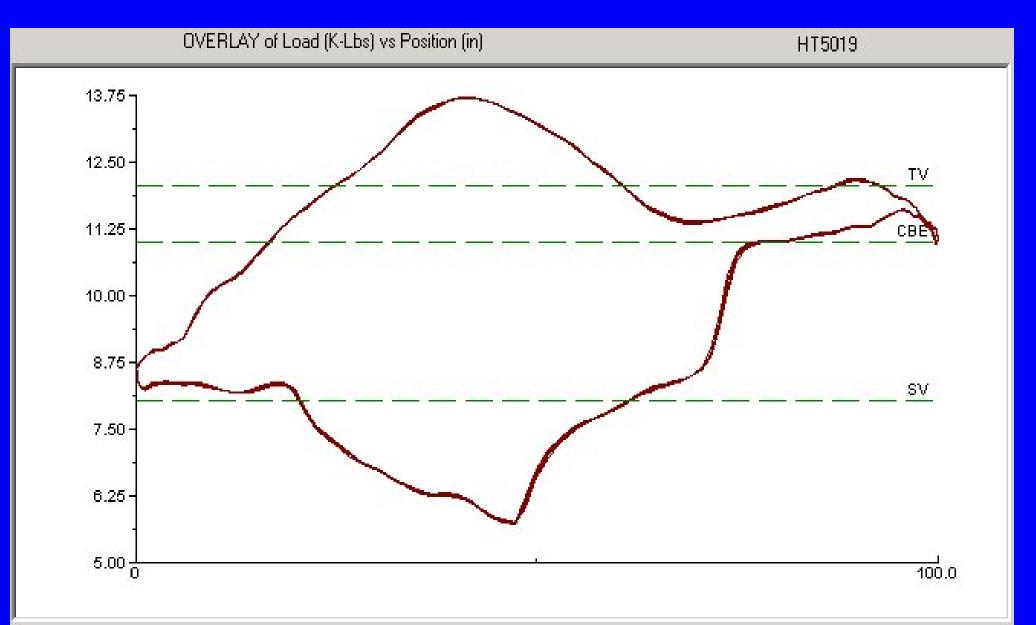
Use T_N = 84.5 x kW x Eff / (SPM x SV) to Calculate Net Gearbox Torque

Power Balancing Considerations

- Measurement of power using the powercurrent transducer is a quick and easy process
- For more efficient operations power requirement on the upstroke should be balanced against the downstroke
- Operator does not have to know the pumping unit API dimensions, weight of counterbalance, or center of gravities; all that is needed, is to know is the weight of the counterbalance that must be moved

Determine Mechanical Net Gearbox Torque Defined by API Standard 11-E

Torque Factor Method is the Standard Method to Determine the Instantaneous Torque Throughout the Pumping Cycle


Use:

Polished Rod Load and Position Data

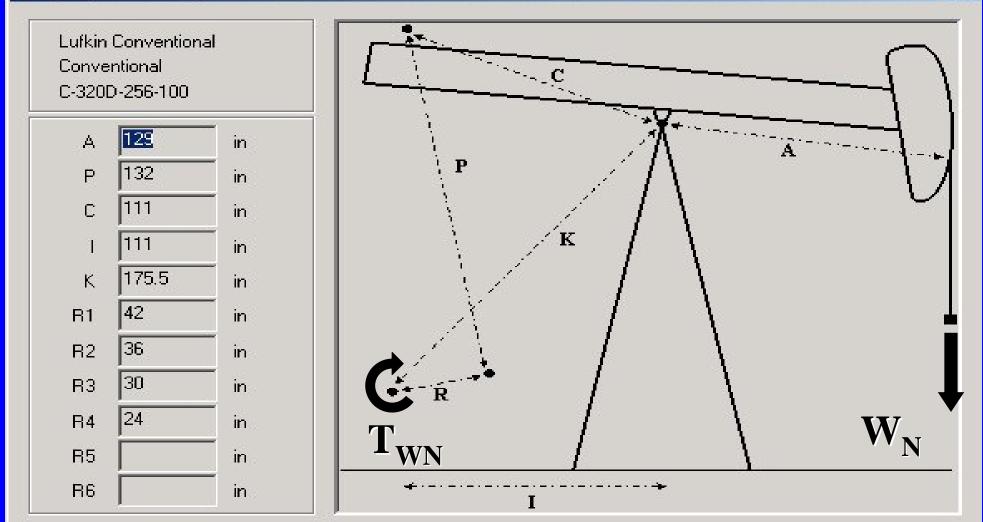
Torque Factors

Together with Counterbalance Moments

Dynamometer Outputs Polished Rod Load/Position Applied to Unit Over One Complete Stroke

Torque Factors

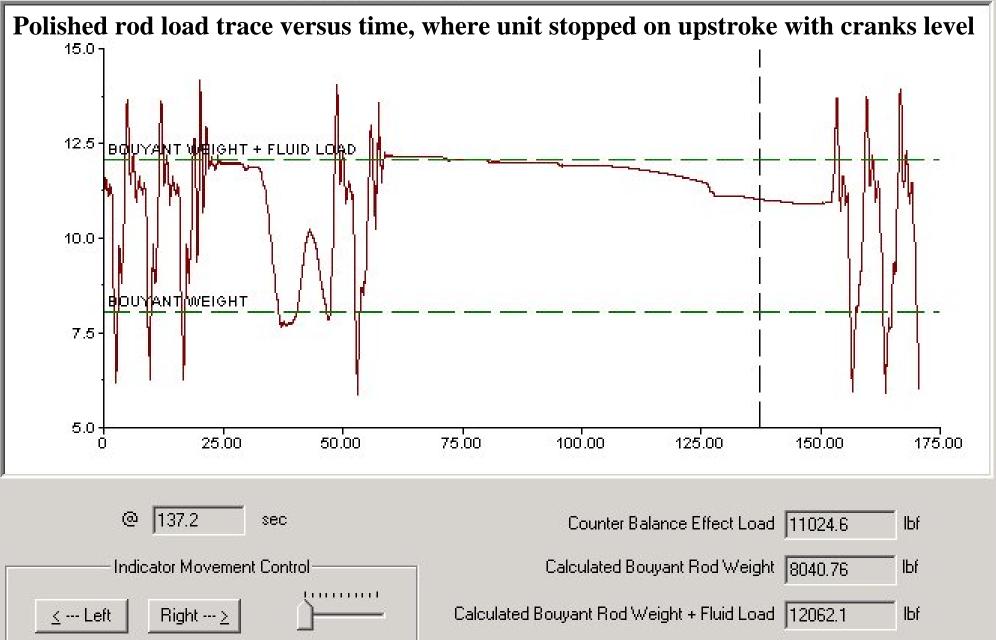
- 1. Unit API Dimensions Hand Entered or Selected From a Data Base
- 2. Torque factors (TF) are derived from the geometry of the particular pumping unit
- 3. Used to determine the instantaneous torque due to polished rod load at a given crank position.


Select API Dimensions From Data Base

Pu	mping Unit I	Library Edi	itor						? ×
		New U	nit	[Delete Unit			Duplicate U	nit
	Manufa	Class Co	íkin Conve nventiona 320D-256-	Í	•	Status: System	Unit.	Record Loci	ked
	Gearbox	320000	in-lb	Structural Load	25600	— њ		in	Stroke Length in
	A	129	in	С	111	in	R1	42	100
	P	132	in	1	111	in	R2	36	85.7143
	к	175.5	in	Tau	0	 degree	R3	30	71.4286
	Structural Unbalance	550	в				R4	24	57.1429
							R5		
	Comment						R6		
			- 11510	10.000000000	D	one		Save	Diagram

Torque Factors Derived from Geometry of Selected Pumping Unit

Pumping Unit Library



Torque due to Polished Rod Load Net well load is: $W_N = net well load = (W - SU)$ **Torque due to net well load is:** $T_{WN} = TF \times W_N$ Where: W = well load at a specific crank angle SU = structural unbalance of the pumping unit (either plus or minus value) **TF** = torque factor, inches

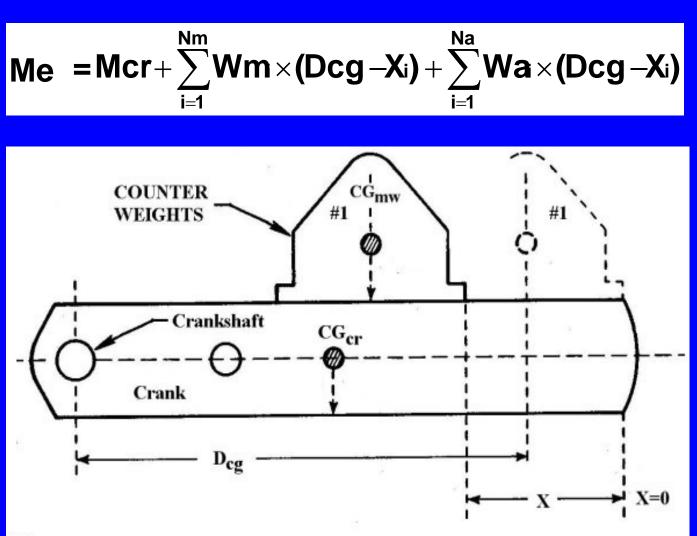
Counterbalance Moment, Me, from CBE $Me = TF_{90} \times (CBE - SU) / sin (\theta + \tau)$ Where: Me = existing counterbalance moment of the crank and counter weights **CBE = well load at 90 Deg crank angle** = structural unbalance of the SU pumping unit (either plus or minus value) $TF_{90} = torque factor at 90 Deg crank angle$ = the crank angle (90) θ = the crank phase angle τ

Field Measured CBE with Crank Level Example Well #1

CBE Load (K-Lbs) vs Time (sec)

Determine Mechanical Net Gearbox Torque Defined by API Standard 11-E

Torque Factor Method is the Standard Method to Determine the Instantaneous Torque Throughout the Pumping Cycle


Use:

Polished Rod Load and Position Data

Torque Factors

Together with Counterbalance Moments

Calculate Counterbalance Moment for Moment for Conventional Pumping Units with Crank Mounted Mounted

Note:

For convenience only one Counterweight is shown on the top of the crank (this is the #1 Counterweight).

Where:

- Me = Existing counterbalance moment of the crank and counter weights (in-lbs)
- Mcr = Crank counterbalance moment (in-lbs)
- Wmi = Weight of the master counterweight (lbs)
- Wai = Weight of the auxiliary counterweight (lbs)
- Dcgi = Maximum distance from centerline of the Crankshaft to the counterweight center of gravity (in)
- X_i = Distance from end of the crank to the outside edge of the counterweight
- Xmax = Maximum distance along crank that counterweight can be moved
- Nm = Number of master counterweights
- Na = Number of auxilary counterweights

Counterbalance moment for conventional cranks is the sum of the moments contributed by the cranks themselves (Weight x Center-of-Gravity) plus the moments of the master and auxiliary weights.

Example Well #1 (2 x 8495B Cranks with 4 x 3CRO Master Weights):

	Crank #1	Crank #2
Name	8495B	8495B
Weight - Lbs	3510	3510
Center Gravity (CG) - inches	46.25	46.25
Mcr, Crank Moment (in-Ibs):	162,338	162,338

	Master	Weight	Master	Weight
	#1	#2	#1	#2
Name	3CRO	3CRO	3CRO	3CRO
Wmi, Weight (Lbs)	1327	1327	1327	1327
Dcgi (inches)	72.2	72.2	72.2	72.2
Xi. (inches)	40	40	40	40
CG - inches	<u>32.2</u>	32.2	32.2	32.2
M. W. Moment (in-Ibs):	44,056	44,056	44,056	44,056

Total Moment:

2 x 162,338 + 4 x 44,056 = 500,900 in-lbs

Select Cranks and Counter Weights

Calculate:

Sum the moments contributed by the cranks themselves

(Weight x Centerof-Gravity)

Plus the moments of the master and auxiliary weights.

Counter Balance Moment Existing

Manufactuer	Lufkin	Unit Class	Conventional
API Description	C-320D-256-100	Unit Description	C-320D-256-100
RANK #1			
Crank No.	8495B	•	
Master Weight #1		Master Weight #2-	
Master Wt. No.	3CR0 💌	Master Wt. No.	3CRO 🔽
Aux .1 Wt. No.	NONE	Aux .1 Wt. No.	NONE
Aux .2 Wt. No.	NONE	Aux .2 Wt. No.	NONE
Distance From End of Crank	40 in	Distance From End of Crank	40 in
RANK #2			
Crank No.	8495B	•	
Master Weight #1		Master Weight #2-	
Master Wt. No.	3CRO 💌	Master Wt. No.	3CRO 🔽
Aux .1 Wt. No.	NONE	Aux .1 Wt. No.	NONE
Aux .2 Wt. No.	NONE	Aux .2 Wt. No.	NONE
Distance From End of Crank	40 in	Distance From End of Crank	40 in

×

Torque due to Counterbalance Moment CBE or CBM

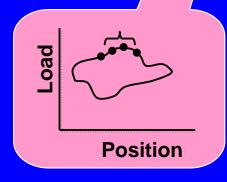
 $T_{\rm CN} = M x \sin \left(\theta + \tau\right)$

Where:

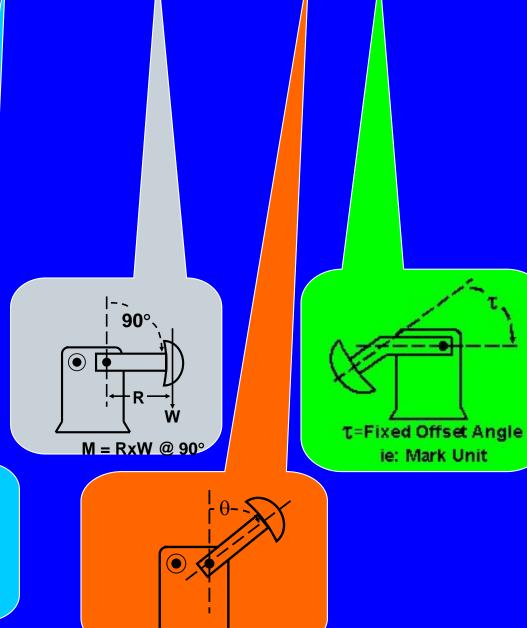
M = existing counterbalance moment of the crank and counter weights
θ = the crank angle
τ = the crank phase angle

Net Gearbox Torque, T_N **Difference** between the torque due to net well load and the torque due to the counterbalance moment of the crank and counterweights:

 $T_N = TF \times W_N$ - M $x \sin(\theta + \tau)$

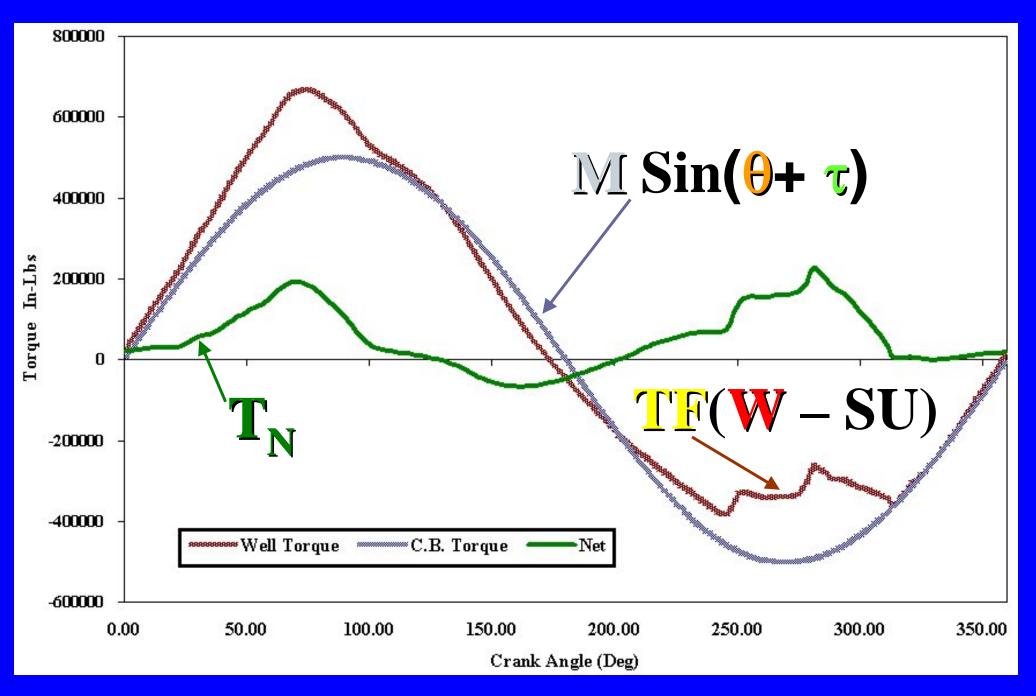

Net Gearbox Torque, T_N

$T_{N} = TF(W - SU) - M Sin(\theta + \tau)$


- T_N = net gearbox toque (inch-lbs)
- TF = torque factor at crank angle θ, (in-lbs)/lbs = inch
- $W = polished rod load at \theta$, (lbs)
- SU = structural unbalance of unit (if negative, head falls, lbs)
- M = maximum counter weight moment (in-lbs)
- θ = crank angle (degrees)
- τ = crank offset angle (degrees)

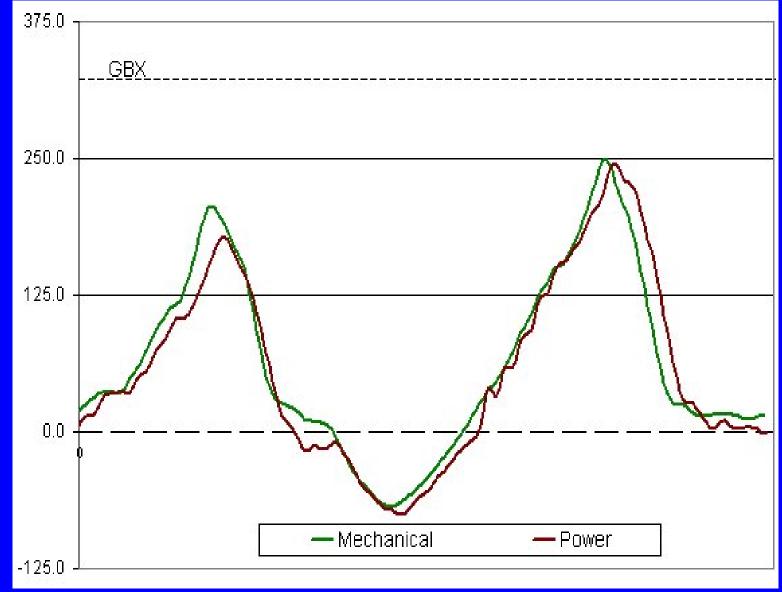
$\mathbf{T}_{N} = \mathbf{TF}(\mathbf{W} - \mathbf{SU}) - \mathbf{M} \operatorname{Sin}(\mathbf{\theta} + \mathbf{\tau})$

Torque Factor: From tables or calculated, (in-lbf)/lbf, each load & position


Structural unbalance, Lbf, if negative, head falls

Example of API Standard 11-E Calculations

(1)	(2)	(3)	(4)	(5)	(6)	$\overline{\mathbf{O}}$	(8)	(9)	(10)	(11)	(12)
Crank	Phase	Coll		Well	Structural	Col 5-6	Torque	Col 7x8	С.В.	Col 4x10	Col 9-11
Angle		+ Col2		Load	Unb alance	Net PRL	Factor	Well Torque	Moment	C.B. Torque	
Deg	Deg	Deg	Sin(Col3)	(Lbs)	(Lbs)	(Lbs)	(In)	(In-Lbs)	(In-Lbs)	(In-Lbs)	(In-Lbs)
0.0	0	0.00	0.0000000000000000000000000000000000000	8658	550	8108	1.58	12794	500900	2000 Sector and a 2000	12794
15.0	0	15.00	0.259	9005	550	1	18.87	159565	500900	129642	29922
30.0	0	30.00	0.500	10107	550	9557	32.11	306898	500900	250450	56448
45.0	0	45.00	0.707	11423	550	10873	41.87	455190	500900	354190	101001
60.0	0	60.00	0.866	12767	550	12217	48.17	588525	500900	433792	154733
75.0	0	75.00	0.966	13636	550	13086	51.14	669253	500900	483832	185421
90.0	0	90.00	1.000	12485	550	11935	50.76	605893	500900	500900	104993
105.0	0	105.00	0.966	11408	550	10858	46.91	509394	500900	483832	25562
120.0	0	120.00	0.866	11774	5.50	11224	39.59	444325	500900	433792	10533
135.0	0	135.00	0.707	12189	550	11639	29.35	341568	500900	354190	-12622
150.0	0	150.00	0.500	11761	5.50	11211	17.59	197159	500900	250450	-53291
165.0	0	165.00	0.259	11113	550	10563	6.01	63476	500900	129642	-66167
173.5	0	173.50	0.113	11131	550	10581	0.00	0	500900	56704	-56704
180.0	0	180.00	0.000	11260	550	10710	-4.28	-45869	500900	0	-45869
195.0	0	195.00	-0.259	11504	550	10954	-13.12	-143701	500900	-129642	-14058
210.0	0	210.00	-0.500	11433	550	10883	-20.87	-227123	500900	-250450	23327
225.0	0	225.00	-0.707	11203	550	10653	-28.04	-298702	500900	-354190	55488
240.0	0	240.00	-0.866	11033	550	10483	-34.96	-366499	500900	-433792	67293
255.0	0	255.00	-0.966	8449	550	7899	-41.64	-328890	500900	-483832	154942
270.0	0	270.00	-1.000	7689	550	7139	-47.52	-339252	500900	-500900	161648
285.0	0	285.00	-0.966	5914	550	5364	-55.48	-297574	500900	-483832	186258
300.0	0	300.00	-0.866	6706	550	6156	-50.99	-313910	500900	-433792	119882
315.0	0	315.00	-0.707	8364	550	7814	-44.72	-349428	500900	-354190	4761
330.0	0	330.00	-0.500	8344	550	7794	-32.18	-250796	500900	-250450	-346
345.0	0	345.00	-0.259	8302	5.50	7752	-15.34	-118904	500900	-129643	10738
357.8	0	357.80	-0.038	8651	550	8101	0.00	0	500900	-19229	19229
360.0	0	360.00	0.000	8658	5.50	8108		12794	500900	0	12794


Plot of API Standard 11-E Calculations

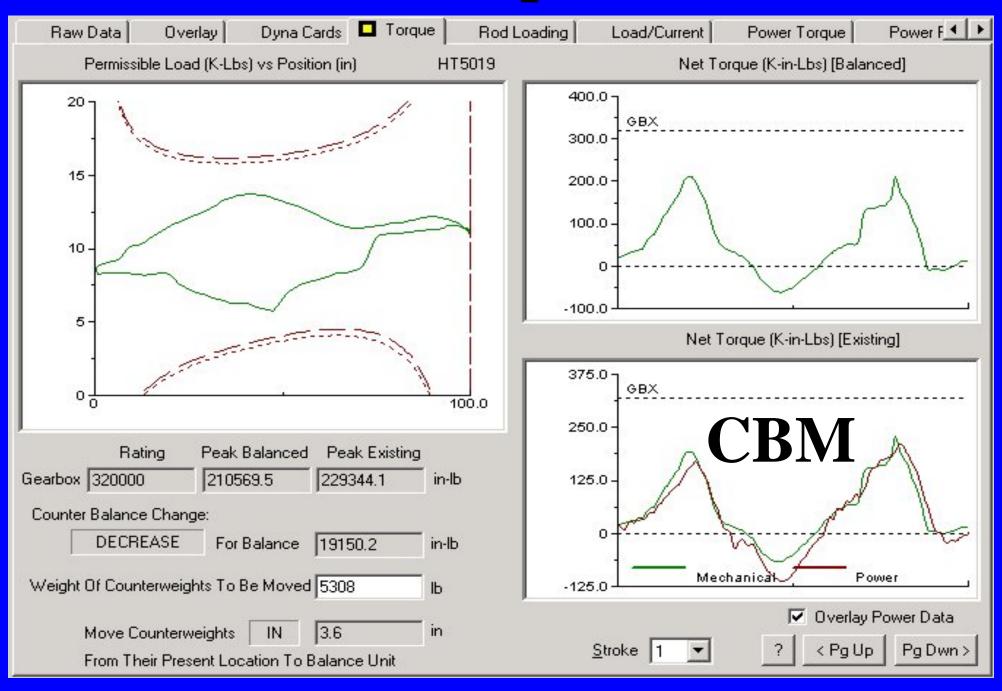
Both Power and Mechanical Show Gearbox to be Weight Heavy (overbalanced)

Well #1 Plot of Power and Mechanical Torque Data

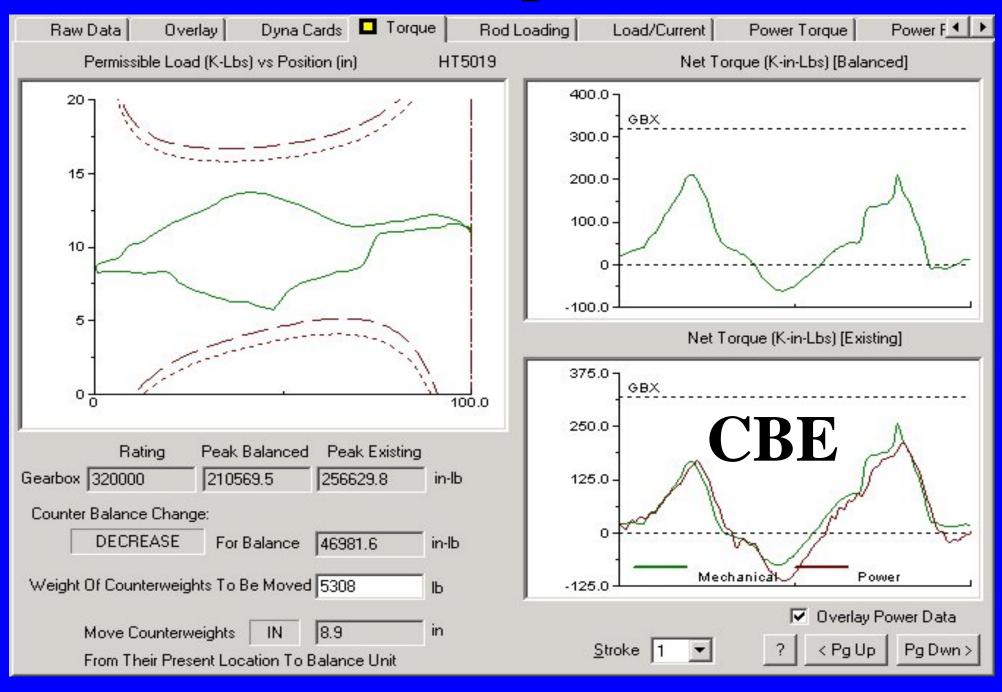
Counterweights need to move in from the end of the crank to balance the peak torques

Determine Counterbalance Moment, M, to Balance Peak Torques Between Upstroke and Downstroke

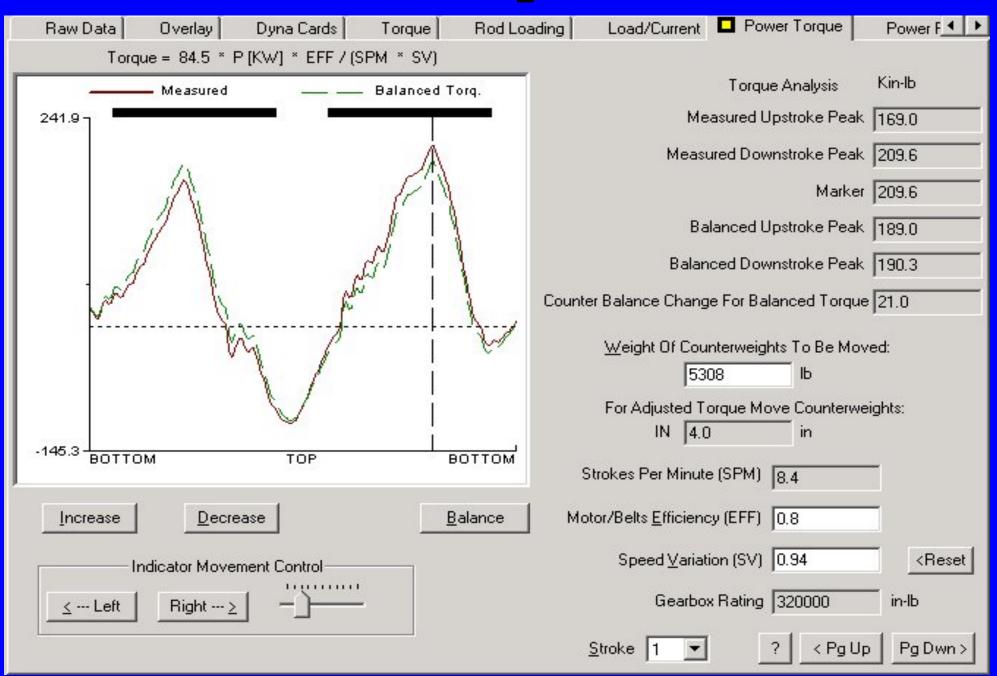
Balancing the peak torques done by equating the upstroke peak, T_{Nu}, to the downstroke peak, T_{Nd}.


Solving for the counterbalance moment that makes the two peak torques equal $(T_{Nd} = T_{Nu})$.

 $\mathbf{M} = [\mathbf{TF}_{d} \times (\mathbf{W}_{d} - \mathbf{SU}) - \mathbf{TF}_{u} \times (\mathbf{W}_{u} - \mathbf{SU})] / [\sin (\theta_{d} + \tau) - \sin (\theta_{u} + \tau)]$

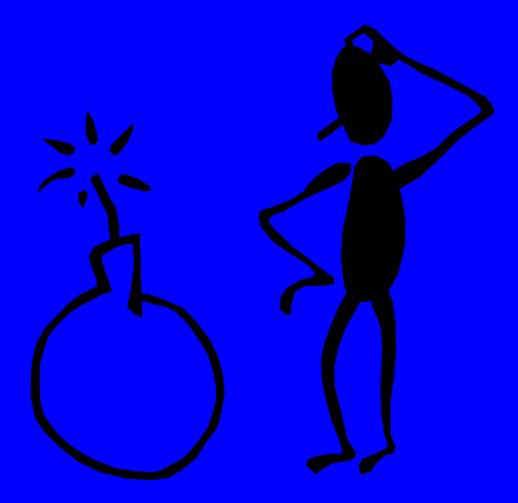

Select Mechanical Torque Method

File Mgmt	General 🗖 Surface Equip.	Wellbore	Conditions	Press. Transient Data	
[Alt-1] Surface	Unit	F	For Net Torque C	alculations Use:	
Manufacturer	Lufkin Conventional			alance Effect (Weights I	evel)
Unit Class	Conventional	•	11.02		CBM
API	C-320D-256-100		Counter B	alance Moment (Existing)
Stroke Length	100 💌 in		500.9	Kin-Ib	Counter Weights
Rotation	⊂ cw . € ccw		Weight Of Count	er Weights 5324	в
File Mgmt	General 🗖 Surface Equip.	Wellbore	Conditions	Press. Transient Data	
File Mgmt [Alt- <u>1]</u> Surface				Press. Transient Data Calculations Use:	
	Unit		For Net Torque C	alculations Use:	•
[Alt-1] Surface	Unit Lufkin Conventional		For Net Torque C	alculations Use: alance Effect (Weights I	evel)
- [Alt- <u>1]</u> Surface Manufacturer	Unit Lufkin Conventional		For Net Torque C Counter B 11.02	alculations Use: alance Effect (Weights I	evel) CBE
[Alt- <u>1]</u> Surface Manufacturer Unit Class	Unit Lufkin Conventional Conventional C-320D-256-100		For Net Torque C Counter B 11.02	alculations Use: alance Effect (Weights I 46 KIb alance Moment (Existing	evel) CBE


Net Gearbox Torque - Mechanical

Net Gearbox Torque - Mechanical

Net Gearbox Torque - Power



Distance to be Moved Marked on Crank for "Weight of Counterweights to be Moved"

Initial Location of Weights Marked on Crank Arm Using a Yellow Paint Marker. Distance Measured from End of Crank to Move Weight Is Marked On The Master Weight.

Second Mark Placed On the Crank Identifies the Location Service Company Will Use to Align the Outside Edge Of the Weight When Moved.

Questions ?

